nn个粒子位于一个数轴上,第ii个粒子都有pip_i的概率往右移动,否则往左移动,并且初始位于坐标xix_i处,其移动速度为viv_i。问粒子第一次发生碰撞的期望时间,保证不存在坐标相同的两个粒子

n105,109x109,1v106n \leq 10^5, -10^9 \leq x \leq 10^9, 1 \leq v \leq 10^6

CF1287F

Solution

能够发生第一次碰撞的粒子对,一开始肯定是相邻的,所以我们可以处理出所有可能会发生的碰撞的时间。

考虑按时间排序后的第ii种碰撞的情况,其发生的概率为P(P(i1i-1种碰撞均未发生且第ii种碰撞发生)=P() = P(i1i-1种碰撞均未发生)P() - P(ii种碰撞均未发生))

考虑对所有的时刻进行 dpdp,设dpi,0/1dp_{i,0/1}表示考虑了前ii个点,且第ii个点往左/右时,在当前时刻之前没有发生碰撞的概率

相当于是在对于时间维扫描线,随着时间的推移,需要动态禁止一些转移途径,直接动态DP即可

具体实现可以看代码

时间复杂度:O(n×logn×23)O(n \times \log n \times 2^3)

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include <iostream>
#include <ctime>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <climits>
#include <queue>
#include <set>
#include <cmath>
#include <map>
#include <bitset>
#include <fstream>
#include <tr1/unordered_map>
#include <assert.h>

#define x first
#define y second
#define y0 Y0
#define y1 Y1
#define mp make_pair
#define pb push_back
#define DEBUG(x) cout << #x << " = " << x << endl;

using namespace std;

typedef long long LL;
typedef long double LD;
typedef pair <int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
template <typename T> inline T read ()
{
T sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

inline void proc_status ()
{
ifstream t ("/proc/self/status");
cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) << endl;
}

const int MAXN = 1e5;
const int MOD = 998244353;

namespace MATH
{
inline void ADD (int &a, int b) { if ((a += b) >= MOD) a -= MOD; }

inline int Pow (int a, int b)
{
int ans = 1;
for (int i = b; i; i >>= 1, a = (LL) a * a % MOD) if (i & 1) ans = (LL) ans * a % MOD;
return ans;
}
}

using namespace MATH;

int N;
struct info
{
int x, v, p;

inline void read () { x = ::read<int>(), v = ::read<int>(), p = (LL) ::read<int>() * Pow (100, MOD - 2) % MOD; }

} A[MAXN + 5];

struct matrix // 右1左0
{
int A[2][2];

inline matrix () { memset (A, 0, sizeof A); }

inline int* operator [] (const int &x) { return A[x]; }

inline matrix operator * (const matrix &rhs) const
{
matrix now;
for (int i = 0; i < 2; ++i)
for (int k = 0; k < 2; ++k) if (A[i][k])
for (int j = 0; j < 2; ++j)
ADD (now.A[i][j], (LL) A[i][k] * rhs.A[k][j] % MOD);
return now;
}
};

namespace SEG
{
#define mid ((l + r) >> 1)
#define ls o << 1
#define rs o << 1 | 1
#define lson ls, l, mid
#define rson rs, mid + 1, r
const int MAX_NODE = MAXN * 4;

matrix node[MAX_NODE + 5];

inline void push_up (int o) { node[o] = node[ls] * node[rs]; }

inline void build (int o, int l, int r)
{
if (l == r)
{
int p = A[l].p;
node[o][0][0] = node[o][1][0] = (1 - p + MOD) % MOD;
node[o][0][1] = node[o][1][1] = p;
return ;
}
build (lson), build (rson);
push_up (o);
}

inline void modify (int o, int l, int r, int x, int s0, int s1)
{
if (l == r) { node[o][s0][s1] = 0; return ; }
if (x <= mid) modify (lson, x, s0, s1);
else modify (rson, x, s0, s1);
push_up (o);
}

inline int query () { return (node[1][0][0] + node[1][0][1]) % MOD; }

#undef mid
}

struct point
{
int x, s0, s1, t;
LD tt;

inline point (int _x = 0, int _s0 = 0, int _s1 = 0, int _t = 0, LD _tt = 0) { x = _x, s0 = _s0, s1 = _s1, t = _t, tt = _tt; }
};

inline int cmp_t (point a, point b) { return a.tt < b.tt; }

vector <point> vec;

inline void Init ()
{
for (int i = 1; i < N; ++i)
{
info l = A[i], r = A[i + 1];
if (l.p != 0 && r.p != 1)
vec.pb (point (i + 1, 1, 0, (LL) (r.x - l.x) * Pow (l.v + r.v, MOD - 2) % MOD, (LD) (r.x - l.x) / (l.v + r.v)));
if (l.p != 0 && r.p != 0 && l.v > r.v)
vec.pb (point (i + 1, 1, 1, (LL) (r.x - l.x) * Pow (l.v - r.v, MOD - 2) % MOD, (LD) (r.x - l.x) / (l.v - r.v)));
if (l.p != 1 && r.p != 1 && l.v < r.v)
vec.pb (point (i + 1, 0, 0, (LL) (r.x - l.x) * Pow (r.v - l.v, MOD - 2) % MOD, (LD) (r.x - l.x) / (r.v - l.v)));
}

sort (vec.begin(), vec.end(), cmp_t);

SEG :: build (1, 1, N);
}

inline void Solve ()
{
if (N == 1) return void (puts("0"));
Init ();

int ans = 0, lst = 1;
for (int i = 0; i < vec.size(); ++i)
{
int x = vec[i].x, s0 = vec[i].s0, s1 = vec[i].s1, t = vec[i].t;
SEG :: modify (1, 1, N, x, s0, s1);
int p = (lst - SEG :: query () + MOD) % MOD;
ADD (ans, (LL) p * t % MOD);
lst = SEG :: query ();
}

cout << ans << endl;
}

inline void Input ()
{
N = read<int>();
for (int i = 1; i <= N; ++i) A[i].read();
}

int main ()
{

#ifdef hk_cnyali
freopen("F.in", "r", stdin);
freopen("F.out", "w", stdout);
#endif

Input ();
Solve ();

return 0;
}