有一块长度为 nn 的画布,每个位置可以染成 [1,m][1, m] 这些颜色中的一种。

如果画布上恰好有 kk 种颜色恰好出现了 ss 次,则会产生 wkw_k 的愉悦度,求所有不同画布的愉悦度之和,对 10045358091004535809 取模。

n106,m106,s150n\le 10^6, m\le 10^6, s\le 150

LOJ 2527

Solution

感觉是一道容斥的入门题。。。

fif_i表示钦定ii种颜色出现了恰好ss次的方案数,gig_i表示恰好ii种颜色出现了ss次的方案数,lim=min{m,ns}lim = \min\{m, \frac{n}{s}\}

fi=(mi)(nis)(is)!(s!)i×(mi)nis \begin{aligned} f_i &= \binom{m}{i}\binom{n}{is}\frac{(is)!}{(s!)^i}\times(m-i)^{n-is}\\ \end{aligned} gi=j=ilim(1)ji(ji)fj=1i!j=ilim(1)ji(ji)!×j!fj \begin{aligned} g_i &= \sum_{j=i}^{lim}(-1)^{j-i}\binom{j}{i}f_j\\ &=\frac{1}{i!}\sum_{j=i}^{lim}\frac{(-1)^{j-i}}{(j-i)!}\times j!\cdot f_j\\ \end{aligned}

直接卷积即可

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#include <bits/stdc++.h>

#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
template <typename T> inline T read ()
{
T sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

inline void proc_status ()
{
ifstream t ("/proc/self/status");
cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) << endl;
}

const int Maxn = 2e6 + 100;
const int Mod = 1004535809;

int N, M, S;
int W[Maxn];

namespace MATH
{
const int maxn = 1e7 + 5;
int fac[maxn], ifac[maxn];

inline void Add (int &a, int b) { if ((a += b) >= Mod) a -= Mod; }

inline int Pow (int a, int b)
{
int ans = 1;
for (int i = b; i; i >>= 1, a = (LL) a * a % Mod) if (i & 1) ans = (LL) ans * a % Mod;
return ans;
}

inline void init (int n)
{
fac[0] = 1;
for (int i = 1; i <= n; ++i) fac[i] = (LL) fac[i - 1] * i % Mod;
ifac[n] = Pow (fac[n], Mod - 2);
for (int i = n - 1; i >= 0; --i) ifac[i] = (LL) ifac[i + 1] * (i + 1) % Mod;
}

inline int C (int n, int m) { if (n < m) return 0; return (LL) fac[n] * ifac[m] % Mod * ifac[n - m] % Mod; }
}

using namespace MATH;

namespace Poly
{
const int g = 3;
int n, rev[Maxn];

inline void dft (int *A, int fg)
{
for (int i = 0; i < n; ++i) if (i < rev[i]) swap (A[i], A[rev[i]]);
for (int mid = 1; mid < n; mid <<= 1)
{
int Wn = Pow (g, (Mod - 1) / (mid << 1));
if (fg == -1) Wn = Pow (Wn, Mod - 2);
for (int i = 0; i < n; i += mid << 1)
for (int j = i, W = 1; j < i + mid; ++j, W = (LL) W * Wn % Mod)
{
int x = A[j], y = (LL) W * A[j + mid] % Mod;
A[j] = (x + y) % Mod;
A[j + mid] = (x - y + Mod) % Mod;
}
}
if (fg == -1) for (int i = 0, inv = Pow (n, Mod - 2); i < n; ++i) A[i] = (LL) A[i] * inv % Mod;
}

inline void mul (int *A, int *B, int *C, int N)
{
for (n = 1; n <= N << 1; n <<= 1);
for (int i = 0; i < n; ++i) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) ? (n >> 1) : 0);

static int F[Maxn], G[Maxn];

for (int i = 0; i < n; ++i) F[i] = (i <= N) ? A[i] : 0;
for (int i = 0; i < n; ++i) G[i] = (i <= N) ? B[i] : 0;

dft (F, 1), dft (G, 1);
for (int i = 0; i < n; ++i) F[i] = (LL) F[i] * G[i] % Mod;
dft (F, -1);

for (int i = 0; i <= N << 1; ++i) C[i] = F[i];
}
}

int F[Maxn], G[Maxn], H[Maxn];

inline void Solve ()
{
int LIM = min (M, N / S);
for (int i = 0; i <= LIM; ++i) F[i] = (LL) C (M, i) * C (N, i * S) % Mod * fac[i * S] % Mod * Pow (ifac[S], i) % Mod * Pow (M - i, N - i * S) % Mod * fac[i] % Mod;
for (int i = 0; i <= LIM; ++i) G[i] = (LL) Pow (Mod - 1, i) * ifac[i] % Mod;
reverse (F, F + LIM + 1);

Poly :: mul (F, G, H, LIM);

reverse (H, H + LIM + 1);

int ans = 0;
for (int i = 0; i <= LIM; ++i) Add (ans, (LL) H[i] * ifac[i] % Mod * W[i] % Mod);
cout << ans << endl;
}

inline void Input ()
{
N = read<int>(), M = read<int>(), S = read<int>();
for (int i = 0; i <= M; ++i) W[i] = read<int>();
}

int main()
{

#ifdef hk_cnyali
freopen("A.in", "r", stdin);
freopen("A.out", "w", stdout);
#endif

MATH :: init (1e7);
Input ();
Solve ();

return 0;
}