有一棵nn个点的树, 边有边权.

树上有k个点移动速度为正无穷,人初始在s位置,移动速度为1,求至少多少时间才能将抓住所有点(人和点都进行最优决策,点尽可能拖延时间).

n,k<=50. n,k<=50.

CF 868E

Solution

f[p][u][s1][s2]f[p][u][s1][s2]为当前即将从pp走到uu, 以pp为根时,uu子树中有s1s_1个人, 其他部分有s2s_2个人的全局的答案

显然,若当前不在叶子,就会往某个叶子一直走,不会回头;如果在叶子节点就可以抓住全部ss个点,再回去:f[u][p][s2][0]f[u][p][s2][0]

否则考虑点的策略:以背包的方式将ss个点分配到vv的一些子树中,最大化最小时间.

最大化最小时间的意思是,人的方案是可以选择的,而在所有方案中,点会选择一个花费最大的方案跑

记录临时转移数组g[i]g[i]表示将ii个点分配到vv的子树中的最大时间

一个一个子树转移,枚举在新子树中放ii个点:max{g[j],min{g[ji],f[p][v][i][k]}}\max\{g[j],\min\{g[j-i],f[p][v][i][k]\}\},是一个类似背包的转移方法

具体实现可以记忆化搜索

更详细的理解可以参考GC's Blog

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <bits/stdc++.h>
 
#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back
#define DEBUG(x) cout << #x << " = " << x << endl;
 
using namespace std;
 
typedef long long LL;
typedef pair <int, int> pii;
 
template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
template <typename T> inline T read ()
{
T sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}
 
inline void proc_status ()
{
ifstream t ("/proc/self/status");
cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) << endl;
}
 
const int Maxn = 50 + 5;
const int inf = 0x3f3f3f3f;
 
int N, S, M;
int e, Begin[Maxn], To[Maxn << 1], Next[Maxn << 1];
 
inline void add_edge (int x, int y) { To[++e] = y; Next[e] = Begin[x]; Begin[x] = e; }
 
int is_leaf[Maxn], size[Maxn];
 
inline void dfs (int x, int f)
{
int cnt = 0;
for (int i = Begin[x]; i; i = Next[i])
{
int y = To[i];
++cnt;
if (y == f) continue;
dfs (y, x);
size[x] += size[y];
}
if (cnt == 1) is_leaf[x] = 1;
}
 
int Dp[Maxn][Maxn][Maxn][Maxn], A[Maxn][Maxn];
 
inline int get_dp (int x, int to, int s1, int s2)
{
if (s1 + s2 == 0) return 0;
if (!s1) return inf;
if (Dp[x][to][s1][s2] < 1e9) return Dp[x][to][s1][s2];
if (is_leaf[to]) return Dp[x][to][s1][s2] = get_dp (to, x, s2, 0) + A[x][to];
 
int f[Maxn];
memset (f, 0, sizeof f);
f[0] = inf;
 
for (int i = Begin[to]; i; i = Next[i])
{
int y = To[i];
if (y == x) continue;
for (int j = s1; j >= 0; --j)
for (int k = 0; k <= j; ++k)
Chkmax (f[j], min (f[j - k], get_dp (to, y, k, s1 + s2 - k)));
}
 
 
return Dp[x][to][s1][s2] = f[s1] + A[x][to];
}
 
inline void Solve ()
{
dfs (S, 0);
memset (Dp, 0x3f, sizeof Dp);
int ans = inf;
for (int i = Begin[S]; i; i = Next[i])
{
int y = To[i];
Chkmin (ans, get_dp (S, y, size[y], M - size[y]));
}
cout << ans << endl;
}
 
inline void Input ()
{
N = read<int>();
for (int i = 1; i < N; ++i)
{
int x = read<int>(), y = read<int>(), z = read<int>();
A[x][y] = A[y][x] = z;
add_edge (x, y);
add_edge (y, x);
}
S = read<int>(), M = read<int>();
for (int i = 1; i <= M; ++i) ++size[read<int>()];
 
}
 
int main()
{
 
#ifndef ONLINE_JUDGE
freopen("E.in", "r", stdin);
freopen("E.out", "w", stdout);
#endif
 
Input ();
Solve ();
 
return 0;
}