一个含有 nn 个互异正整数的序列 cc

若一棵带点权的有根二叉树满足其所有顶点的权值都在集合 c[1],c[2],...,c[n]c[1],c[2],...,c[n] 中, 就是好的二叉树,一棵带点权的树的权值,是其所有顶点权值的总和。

给出一个整数 mm,对于任意的 s(1<=s<=m)s(1<=s<=m) 计算出权值为 ss 的好二叉树的个数。

两个二叉树不同当他们点数不同或者结构不同,答案对 998244353998244353 取模

1n105,1m105,Ci1051 \le n \le 10^5 , 1 \le m \le 10^5 , C_i \le 10^5

Solution

19-8-9-1

模板题,第一次写多项式求逆和开根

  • 求逆:B(x)=2B(x)A(x)B(x)2B(x) = 2B'(x) - A(x)B'(x)^2
  • 开根:B(x)=A(x)+B(x)22B(x)B(x) = \frac{A(x) + B'(x)^2}{2B'(x)},推导时构造完全平方数

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#include <bits/stdc++.h>

#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back
#define DEBUG(x) cout << #x << " = " << x << endl;

using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
template <typename T> inline T read ()
{
T sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

inline void proc_status ()
{
ifstream t ("/proc/self/status");
cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) << endl;
}

const int Maxn = 1e6 + 100;
const int Mod = 998244353;
const int g = 3;

int N, M;
int C[Maxn];

inline void Add (int &a, int b) { if ((a += b) >= Mod) a -= Mod; }

inline int Pow (int a, int b)
{
int ans = 1;
for (int i = b; i; i >>= 1, a = (LL) a * a % Mod) if (i & 1) ans = (LL) ans * a % Mod;
return ans;
}

namespace Poly
{
int n, rev[Maxn];
int _W[2][Maxn];

inline void init (int maxn = 1e6)
{
for (int mid = 1; mid <= maxn; mid <<= 1)
{
_W[0][mid] = Pow (g, (Mod - 1) / (mid << 1));
_W[1][mid] = Pow (_W[0][mid], Mod - 2);
}
}

inline void dft (int *A, int fl)
{
for (int i = 0; i < n; ++i) if (rev[i] < i) swap (A[i], A[rev[i]]);
for (int mid = 1; mid < n; mid <<= 1)
{
int W = _W[0][mid];
if (fl == -1) W = _W[1][mid];
for (int i = 0; i < n; i += (mid << 1))
{
int Wn = 1;
for (int j = i; j < i + mid; ++j, Wn = (LL) Wn * W % Mod)
{
int x = A[j], y = (LL) Wn * A[j + mid] % Mod;
A[j] = (x + y) % Mod;
A[j + mid] = (x - y + Mod) % Mod;
}
}
}
if (fl == -1) {int inv = Pow (n, Mod - 2); for (int i = 0; i < n; ++i) A[i] = (LL) A[i] * inv % Mod; }
}

inline void mul (int *A, int N, int *B, int M, int *C)
{
static int F[Maxn], G[Maxn];
n = 1; while (n <= N + M) n <<= 1;
for (int i = 0; i < n; ++i) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) ? (n >> 1) : 0);
for (int i = 0; i < n; ++i) F[i] = (i <= N) ? A[i] : 0;
for (int i = 0; i < n; ++i) G[i] = (i <= M) ? B[i] : 0;

dft (F, 1), dft (G, 1);
for (int i = 0; i < n; ++i) F[i] = (LL) F[i] * G[i] % Mod;
dft (F, -1);
for (int i = 0; i < n; ++i) C[i] = (i <= N + M) ? C[i] : 0;
}

inline void get_inv (int *A, int *B, int N)
{
if (N == 1) { B[0] = Pow (A[0], Mod - 2); return ; }
int len = (N + 1) >> 1;
get_inv (A, B, len);

static int F[Maxn], G[Maxn];
n = 1; while (n <= 2 * N) n <<= 1;
for (int i = 0; i < n; ++i) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) ? (n >> 1) : 0);
for (int i = 0; i < n; ++i)
{
F[i] = (i < N) ? A[i] : 0;
G[i] = (i < len) ? B[i] : 0;
}

dft (F, 1), dft (G, 1);
for (int i = 0; i < n; ++i) F[i] = (2ll * G[i] % Mod - (LL) F[i] * G[i] % Mod * G[i] % Mod + Mod) % Mod;
dft (F, -1);

for (int i = 0; i < n; ++i) B[i] = (i < N) ? F[i] : 0;
}

inline void get_sqrt (int *A, int *B, int N)
{
if (N == 1) { B[0] = 1; return ; }
int len = (N + 1) >> 1;
get_sqrt (A, B, len);

n = 1; while (n <= 2 * N) n <<= 1;
for (int i = 0; i < n; ++i) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) ? (n >> 1) : 0);

static int F[Maxn], G[Maxn], S[Maxn], H[Maxn];
for (int i = 0; i < n; ++i)
{
F[i] = (i < N) ? A[i] : 0;
G[i] = (i < len) ? B[i] : 0;
S[i] = (i < len) ? 2ll * B[i] % Mod : 0;
H[i] = 0;
}

dft (F, 1), dft (G, 1);
get_inv (S, H, N), dft (H, 1);
for (int i = 0; i < n; ++i) F[i] = (LL) (F[i] + (LL) G[i] * G[i] % Mod) % Mod * H[i] % Mod;
dft (F, -1);

for (int i = 0; i < n; ++i) B[i] = (i < N) ? F[i] : 0;
}
}

int A[Maxn], B[Maxn];

inline void Solve ()
{
C[0] = 1;
for (int i = 1; i <= M; ++i) C[i] = (- 4ll * C[i] % Mod + Mod) % Mod;

Poly :: init ();
Poly :: get_sqrt (C, B, M + 1);
(++B[0]) %= Mod;
Poly :: get_inv (B, A, M + 1);
for (int i = 0; i <= M; ++i) A[i] = 2ll * A[i] % Mod;
for (int i = 1; i <= M; ++i) printf("%d\n", A[i]);
}

inline void Input ()
{
N = read<int>(), M = read<int>();
for (int i = 1; i <= N; ++i) C[read<int>()] = 1;
}

int main()
{

#ifndef ONLINE_JUDGE
freopen("E.in", "r", stdin);
freopen("E.out", "w", stdout);
#endif

Input ();
Solve ();

return 0;
}

//一定注意:所有的F和G都要开static !!!!!!