给定一个长度为 nn 的字符串 SS

mm 次询问,每次询问给出 a,b,c,da,b,c,d

S[a,b]S[a,b]的所有子串和子串S[c,d]S[c,d]LCP(最长公共前缀)的最大值。

n,m105n,m\le10^5

LOJ 2059

Solution

反着建SAM就能建出后缀树,后缀树上最两个串的lcamaxlen就是它们的lcp,具体内容可见此

反着建完SAM之后我们就是要求子串[d,c][d, c][b,a][b, a]中所有子串的最长公共后缀的最大值

考虑二分答案ansans,每次要判断[cans+1,c][c - ans + 1, c]这个子串的right集合中是否存在一个位置pp使得p[b+ans1,a]p\in [b + ans - 1,a]

线段树合并求right集合即可,注意找[cans+1,c][c - ans + 1, c]这个子串在SAM中对应状态需要用倍增实现,具体也可见此

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#include <bits/stdc++.h>

#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
template <typename T> inline T read ()
{
T sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

inline void proc_status ()
{
ifstream t ("/proc/self/status");
cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) << endl;
}

const int Maxn = 1e5 + 100;

int N, M;
char S[Maxn];

namespace SEG
{
#define mid ((l + r) >> 1)
#define ls node[root].ch[0]
#define rs node[root].ch[1]
#define lson ls, l, mid
#define rson rs, mid + 1, r

struct info
{
int ch[2], cnt;
} node[Maxn * 60];

int node_cnt;

inline void push_up (int root) { node[root].cnt = node[ls].cnt + node[rs].cnt; }

inline void insert (int &root, int l, int r, int x)
{
++node[root = ++node_cnt].cnt;
if (l == r) return ;
if (x <= mid) insert (lson, x);
else insert (rson, x);
}

inline int merge (int x, int y, int l, int r)
{
if (!x || !y) return x | y;
int root = ++node_cnt;
ls = merge (node[x].ch[0], node[y].ch[0], l, mid);
rs = merge (node[x].ch[1], node[y].ch[1], mid + 1, r);
push_up (root);
return root;
}

inline int query (int root, int l, int r, int x, int y)
{
if (x > y) return 0;
if (x <= l && r <= y) return node[root].cnt;

int ans = 0;
if (x <= mid) ans += query (lson, x, y);
if (y > mid) ans += query (rson, x, y);
return ans;
}

#undef mid
#undef ls
#undef rs
#undef lson
#undef rson
}

int Root[Maxn << 1];

namespace SAM
{
struct info
{
int maxlen, fa, ch[27];
} node[Maxn << 1];

int node_cnt = 1, last = 1;
int State[Maxn];

inline int new_node (int pre)
{
node[++node_cnt].maxlen = node[pre].maxlen + 1;
return node_cnt;
}

inline int extend (int c)
{
int now = new_node (last), pre = last; last = now;

for (; pre && !node[pre].ch[c]; pre = node[pre].fa) node[pre].ch[c] = now;

if (!pre) node[now].fa = 1;
else
{
int x = node[pre].ch[c];
if (node[x].maxlen == node[pre].maxlen + 1) node[now].fa = x;
else
{
int y = ++node_cnt;
node[y] = node[x]; node[y].maxlen = node[pre].maxlen + 1;
node[x].fa = node[now].fa = y;
for (; node[pre].ch[c] == x; pre = node[pre].fa) node[pre].ch[c] = y;
}
}

return now;
}

vector <int> G[Maxn << 1];
int anc[21][Maxn << 1];

inline void dfs (int x)
{
for (int i = 1; i <= 20; ++i) anc[i][x] = anc[i - 1][anc[i - 1][x]];
for (int i = 0; i < G[x].size(); ++i)
{
int y = G[x][i];
anc[0][y] = x;
dfs (y);
Root[x] = SEG :: merge (Root[x], Root[y], 1, node_cnt);
}
}

inline void build (char *s, int n)
{
for (int i = 1; i <= n; ++i) State[i] = extend (s[i] - 'a');
for (int i = 1; i <= n; ++i) SEG :: insert (Root[State[i]], 1, node_cnt, i);

for (int i = 1; i <= node_cnt; ++i) G[node[i].fa].pb (i);
dfs (1);
}

inline int Check (int ans, int a, int b, int d)
{
int x = State[d];
if (node[x].maxlen < ans) return 0;
for (int i = 20; i >= 0; --i) if (node[anc[i][x]].maxlen >= ans) x = anc[i][x];
return SEG :: query (Root[x], 1, node_cnt, b + ans - 1, a);
}

inline int query (int a, int b, int c, int d)
{
int l = 1, r = min (a - b + 1, c - d + 1), ans = 0;
while (l <= r)
{
int mid = l + r >> 1;
if (Check (mid, a, b, c)) ans = mid, l = mid + 1;
else r = mid - 1;
}
return ans;
}
}

inline void Solve ()
{
reverse (S + 1, S + N + 1);
SAM :: build (S, N);

while (M--)
{
int a = N - read<int>() + 1, b = N - read<int>() + 1, c = N - read<int>() + 1, d = N - read<int>() + 1;
printf("%d\n", SAM :: query (a, b, c, d));
}
}

inline void Input ()
{
N = read<int>(), M = read<int>();
scanf("%s", S + 1);
}

int main()
{

#ifndef ONLINE_JUDGE
freopen("A.in", "r", stdin);
freopen("A.out", "w", stdout);
#endif

Input ();
Solve ();

return 0;
}