给出nn个点,和每个点的度让你构造出一张无向图满足以下两条性质:

  1. 11到点ii仅有唯一一条最短路

  2. 11到点ii的最短路长度大于等于点11到点i1i-1的最短路长度

求能构成满足条件的无重边无自环的无向图的个数

原题:n50n\le 50

加强版:n400n \le 400

CF814

Solution

通过观察性质,发现Bfs序是一段一段连续的,那么可以考虑dp,每次转移一段Bfs序

dp[i][j]dp[i][j]表示[i,j][i, j]这一段作为新的Bfs层,且[1,j][1,j]的点都连好边的方案数

[i,j][i,j]中有aad=2d=2的点,bbd=3d=3的点,考虑枚举下一层的点数有转移:

dp[i][j]dp[j+1][j+k]f[a][b][k] dp[i][j] \rightarrow dp[j + 1][j + k] * f[a][b][k]

其中f[i][j][k]f[i][j][k]表示i+ki+k个度数为11的点,jj个度数为22的点,且kk个度数为11的点只能和其他i+ji+j个点连边的方案数

  • k>0k>0:枚举kk个点中的一个和i+ji+j个点中哪个点连
  • 否则,若i>0i>0:枚举ii个点中的一个和 个点中哪个点连
  • 否则:用若干个环覆盖jj个点的方案数,要注意不能有两个点的环,因为会产生重边

具体转移见这里

Code

注:此代码为加强版代码,因空间过大且模数与原题不同,无法通过原题。原题代码见CF的提交记录

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <bits/stdc++.h>

#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair <int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
template <typename T> inline T read ()
{
T sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

inline void proc_status ()
{
ifstream t ("/proc/self/status");
cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) << endl;
}

const int Maxn = 400 + 20;
const int Mod = 998244353;

int N, A[Maxn], Sum[3][Maxn], Dp[Maxn][Maxn];
int fac[Maxn], ifac[Maxn];

inline void Add (int &a, int b) { a += b; if (a >= Mod) a -= Mod; }

inline int get_sum (int op, int l, int r) { return Sum[op][r] - Sum[op][l - 1]; }

inline int Pow (int a, int b)
{
int ans = 1;
for (int i = b; i; i >>= 1, a = (LL)a * a % Mod) if (i & 1) ans = (LL)ans * a % Mod;
return ans;
}

int f[Maxn][Maxn][Maxn];

inline int Binom (int n, int m) { if (n < m) return 0; return (LL)fac[n] * ifac[m] % Mod * ifac[n - m] % Mod; }

inline int get_f (int i, int j, int k)
{
if (i < 0 || j < 0) return 0;
if (f[i][j][k]) return f[i][j][k] - 1;

int sum = 0;
if (k) sum = ((LL)i * get_f(i - 1, j, k - 1) % Mod + (LL)j * get_f(i + 1, j - 1, k - 1) % Mod) % Mod;
else if (i) sum = ((LL)(i - 1) * get_f(i - 2, j, k) % Mod + (LL)j * get_f(i, j - 1, k) % Mod) % Mod;
else if (j > 2)
for (int l = 2; l < j; ++l) Add (sum, (LL)get_f(i, j - l - 1, k) * Binom(j - 1, l) % Mod * fac[l] % Mod * ifac[2] % Mod);
else sum = !j;

f[i][j][k] = sum + 1;

return sum;
}

inline void Solve ()
{
int ans = 0;

if (A[1] == 1) Dp[2][3] = 1;
else Dp[2][4] = 1;

for (int i = 2; i <= N; ++i)
for (int j = i ; j <= N; ++j)
{
if (!Dp[i][j]) continue;

int sum[3];
for (int k = 0; k < 3; ++k) sum[k] = get_sum (k, i, j);

if (j == N) Add (ans, (LL)Dp[i][j] * get_f(sum[1], sum[2], 0) % Mod);
else
for (int k = 1; k <= sum[0] && k + j <= N; ++k)
Add (Dp[j + 1][j + k], (LL)Dp[i][j] * get_f(sum[1], sum[2], k) % Mod);
}

cout << ans << endl;
}

inline void Input ()
{
N = read<int>();
for (int i = 1; i <= N; ++i)
{
A[i] = read<int>() - 1;
for (int j = 0; j < 3; ++j) Sum[j][i] = Sum[j][i - 1];
Sum[0][i] += A[i], ++Sum[A[i]][i];
}
}

inline void Init (int maxn)
{
fac[0] = 1;
for (int i = 1; i <= maxn; ++i) fac[i] = (LL)fac[i - 1] * i % Mod;
ifac[maxn] = Pow(fac[maxn], Mod - 2);
for (int i = maxn - 1; ~i; --i) ifac[i] = (LL)ifac[i + 1] * (i + 1) % Mod;
}

int main()
{
#ifndef ONLINE_JUDGE
freopen("ffb.in", "r", stdin);
freopen("ffb.out", "w", stdout);
#endif
Input();
Init(N);
Solve();
return 0;
}