1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
| #include <bits/stdc++.h>
#define x first #define y second #define y1 Y1 #define y2 Y2 #define mp make_pair #define pb push_back
using namespace std;
typedef long long LL; typedef pair <int, int> pii;
template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; } template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; } template <typename T> inline T read () { T sum = 0, fl = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1; for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0'; return sum * fl; }
inline void proc_status () { ifstream t ("/proc/self/status"); cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) << endl; }
const int Maxn = 1500000; const double eps = 0.5, PI = acos(-1.0);
int N, M; double A[Maxn], B[Maxn], C[Maxn], D[Maxn]; char S[Maxn];
struct Complex { double x, y;
inline Complex operator + (const Complex &rhs) const { return (Complex){x + rhs.x, y + rhs.y}; } inline Complex operator - (const Complex &rhs) const { return (Complex){x - rhs.x, y - rhs.y}; } inline Complex operator * (const Complex &rhs) const { return (Complex){x * rhs.x - y * rhs.y, x * rhs.y + y * rhs.x}; } inline Complex operator * (const double &rhs) const { return (Complex){x * rhs, y * rhs}; } } Ans[Maxn];
namespace Poly { int n, rev[Maxn]; Complex F[Maxn], G[Maxn];
inline void init (int N, int M) {
n = 1; while (n < N + M) n <<= 1; for (int i = 0; i < n; ++i) rev[i] = (rev[i >> 1] >> 1) + (i & 1 ? (n >> 1) : 0); }
inline void DFT (Complex A[], int flag) { for (int i = 0; i < n; ++i) if (rev[i] < i) swap(A[i], A[rev[i]]);
for (int mid = 1; mid < n; mid <<= 1) { Complex Wn = (Complex){cos(PI / mid), sin(PI / mid) * flag};
for (int i = 0; i < n; i += (mid << 1)) { Complex W = (Complex){1, 0}; for (int j = i; j < i + mid; ++j, W = W * Wn) { Complex a = A[j], b = W * A[j + mid]; A[j] = a + b, A[j + mid] = a - b; } } }
if (flag < 0) for (int i = 0; i < n; ++i) A[i].x /= n; }
inline void FFT (double A[], int N, double B[], int M) { for (int i = 0; i < n; ++i) F[i] = (Complex){i < N ? A[i] : 0, 0}; for (int i = 0; i < n; ++i) G[i] = (Complex){i < M ? B[i] : 0, 0};
DFT(F, 1), DFT(G, 1); for (int i = 0; i < n; ++i) F[i] = F[i] * G[i]; }
inline void Work () { init(N, M); for (int i = 0; i < N; ++i) C[i] = A[i] * A[i] * A[i]; for (int i = 0; i < M; ++i) D[i] = B[i]; FFT (C, N, D, M); for (int i = 0; i < n; ++i) Ans[i] = Ans[i] + F[i];
for (int i = 0; i < N; ++i) C[i] = A[i] * A[i]; for (int i = 0; i < M; ++i) D[i] = B[i] * B[i]; FFT (C, N, D, M); for (int i = 0; i < n; ++i) Ans[i] = Ans[i] - F[i] * 2.0;
for (int i = 0; i < N; ++i) C[i] = A[i]; for (int i = 0; i < M; ++i) D[i] = B[i] * B[i] * B[i]; FFT (C, N, D, M); for (int i = 0; i < n; ++i) Ans[i] = Ans[i] + F[i];
DFT(Ans, -1);
} }
vector <int> p;
inline void Solve () { Poly :: Work (); for (int i = N - 1; i < M; ++i) if (fabs(Ans[i].x) < eps) p.pb(i - N + 2);
cout<<p.size()<<endl; for (int i = 0; i < p.size(); ++i) printf("%d ", p[i]); }
inline void Input () { N = read<int>(), M = read<int>(); scanf("%s", S); for (int i = 0; i < N; ++i) if (S[i] != '*') A[i] = S[i] - 'a' + 1; scanf("%s", S); for (int i = 0; i < M; ++i) if (S[i] != '*') B[i] = S[i] - 'a' + 1; reverse(A, A + N); }
int main() { #ifndef ONLINE_JUDGE freopen("A.in", "r", stdin); freopen("A.out", "w", stdout); #endif Input(); Solve(); return 0; }
|