1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
| #include <bits/stdc++.h>
#define x first #define y second #define y1 Y1 #define y2 Y2 #define mp make_pair #define pb push_back
using namespace std;
typedef long long LL; typedef pair<int, int> pii;
template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; } template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
inline void proc_status() { ifstream t ("/proc/self/status"); cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) <<endl; }
template <typename T> T read () { T sum = 0, fl = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1; for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0'; return sum * fl; }
const int Maxn = 1e5 + 100, Mod = 998244353, g = 3;
int N, W[Maxn];
vector <int> F[Maxn << 2]; int cnt;
inline int Pow (int a, int b) { int ans = 1; for (int i = b; i; i >>= 1, a = (LL)a * a % Mod) if (i & 1) ans = (LL)ans * a % Mod; return ans; }
namespace Poly { int n, rev[Maxn << 2], A[Maxn << 2], B[Maxn << 2];
inline void DFT (int *A, int flag) { for (int i = 0; i < n; ++i) if (i < rev[i]) swap(A[i], A[rev[i]]);
for (int mid = 1; mid < n; (mid <<= 1)) { int Wn = Pow(g, (Mod - 1) / mid / 2); if (flag < 0) Wn = Pow(Wn, Mod - 2);
for (int i = 0; i < n; i += (mid << 1)) { int W = 1; for (int j = i; j < i + mid; ++j, W = (LL)W * Wn % Mod) { int x = A[j], y = (LL)W * A[j + mid] % Mod; A[j] = (x + y) % Mod, A[j + mid] = (x - y + Mod) % Mod; } } }
int inv = Pow(n, Mod - 2); if (flag < 0) for (int i = 0; i < n; ++i) A[i] = (LL)A[i] * inv % Mod; }
inline vector <int> NTT (vector <int> F, vector <int> G) {
int N = F.size(), M = G.size(); n = 1; for (int i = 0; i < N; ++i) A[i] = F[i]; for (int i = 0; i < M; ++i) B[i] = G[i];
while (n <= N + M) n <<= 1; for (int i = 0; i < n; ++i) rev[i] = (rev[i >> 1] >> 1) + (i & 1 ? (n >> 1) : 0); for (int i = N; i <= n; ++i) A[i] = 0; for (int i = M; i <= n; ++i) B[i] = 0;
DFT (A, 1), DFT (B, 1); for (int i = 0; i < n; ++i) A[i] = 1ll * A[i] * B[i] % Mod; DFT (A, -1);
for (int i = 0; i < N; ++i) F[i] = A[i]; for (int i = N; i < N + M; ++i) F.pb(A[i]);
return F; } }
inline int solve (int l, int r) { int id = ++cnt; if (l == r) { F[id].pb(1); for (int i = 1; i < W[l]; ++i) F[id].pb(0); F[id].pb(Mod - 1); return id; }
int mid = l + r >> 1; int lid = solve (l, mid), rid = solve (mid + 1, r);
F[id] = Poly :: NTT (F[lid], F[rid]); return id; }
inline void Add (int &a, int b) { a += b; if (a >= Mod) a -= Mod; }
inline void Solve () { solve (2, N);
int ans = 0;
for (int i = 0; i < F[1].size(); ++i) if (F[1][i]) Add (ans, (LL)W[1] * Pow((i + W[1]) % Mod, Mod - 2) % Mod * F[1][i] % Mod); cout<<ans<<endl; }
inline void Input () { N = read<int>(); for (int i = 1; i <= N; ++i) W[i] = read<int>(); }
int main() { #ifndef ONLINE_JUDGE freopen("A.in", "r", stdin); freopen("A.out", "w", stdout); #endif Input(); Solve(); return 0; }
|