1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
| #include <bits/stdc++.h>
#define x first #define y second #define y1 Y1 #define y2 Y2 #define mp make_pair #define pb push_back
using namespace std;
typedef long long LL; typedef pair<int, int> pii;
template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; } template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
inline void proc_status() { ifstream t ("/proc/self/status"); cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) <<endl; }
template <typename T> T read () { T sum = 0, fl = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1; for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0'; return sum * fl; }
const int Maxn = 2e5 + 100, Mod = 998244353, g = 3;
int N, a, b; int fac[Maxn], ifac[Maxn];
inline int Pow (int a, int b) { int ans = 1; for (int i = b; i; i >>= 1, a = 1ll * a * a % Mod) if (i & 1) ans = 1ll * ans * a % Mod; return ans; }
inline void Init (int maxn) { fac[0] = 1; for (int i = 1; i <= maxn; ++i) fac[i] = 1ll * fac[i - 1] * i % Mod; ifac[maxn] = Pow(fac[maxn], Mod - 2); for (int i = maxn - 1; i >= 0; --i) ifac[i] = 1ll * ifac[i + 1] * (i + 1) % Mod; }
inline int C (int n, int m) { return 1ll * fac[n] * ifac[m] % Mod * ifac[n - m] % Mod; }
namespace Poly { int n, rev[Maxn << 2];
inline void DFT (int *A, int flag) { for (int i = 0; i < n; ++i) if (i < rev[i]) swap (A[i], A[rev[i]]);
for (int mid = 1; mid < n; mid <<= 1) { int Wn = Pow(g, (Mod - 1) / mid / 2); if (flag == -1) Wn = Pow(Wn, Mod - 2); for (int i = 0; i < n; i += (mid << 1)) { int W = 1; for (int j = i; j < i + mid; ++j, W = 1ll * W * Wn % Mod) { int x = A[j], y = 1ll * W * A[j + mid] % Mod; A[j] = (x + y) % Mod, A[j + mid] = (x - y + Mod) % Mod; } } }
int inv = Pow(n, Mod - 2); if (flag == -1) for (int i = 0; i < n; ++i) A[i] = 1ll * A[i] * inv % Mod; }
inline void NTT (int *A, int *B, int N, int M) { n = 1; while (n <= N + M) n <<= 1; for (int i = N; i < n; ++i) A[i] = 0; for (int i = M; i < n; ++i) B[i] = 0; for (int i = 0; i < n; ++i) rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? (n >> 1) : 0);
DFT (A, 1), DFT (B, 1); for (int i = 0; i < n; ++i) A[i] = 1ll * A[i] * B[i] % Mod; DFT (A, -1); } }
int A[25][Maxn << 2], B[Maxn << 2];
inline int solve (int l, int r, int d) { if (l == r) { A[d][0] = l - 1, A[d][1] = 1; return 2; } int mid = l + r >> 1; int n = solve (l, mid, d + 1); for (int i = 0; i < n; ++i) A[d][i] = A[d + 1][i]; int m = solve(mid + 1, r, d + 1); for (int i = 0; i < m; ++i) B[i] = A[d + 1][i]; Poly :: NTT(A[d], B, n, m); return n + m; }
inline int S (int n, int m) { solve(1, n, 0); return A[0][m]; }
inline void Solve () { if (a + b - 2 > N - 1 || !a || !b) { puts("0"); return ; } if (N == 1) { puts("1"); return ; } Init(2e5); cout<<1ll * S(N - 1, a + b - 2) * C(a + b - 2, a - 1) % Mod<<endl; }
inline void Input () { N = read<int>(), a = read<int>(), b = read<int>(); }
int main() { #ifndef ONLINE_JUDGE freopen("permutation.in", "r", stdin); freopen("permutation.out", "w", stdout); #endif Input(); Solve(); return 0; }
|