n n n 个点的完全图,有无数天,每天每条边有p i , j p_{i,j} p i , j 的概率出现,求最优策略下 (可以停在原地)从1 1 1 号点到达n n n 号点的期望距离
n ≤ 2 0 0 0 n\le 2000 n ≤ 2 0 0 0
Links CF605E
Solution 贪心考虑不难发现,最优策略一定是每次尽量尝试走向期望时间小的点,如果不能走再考虑第二小的,以此类推,直到某个点的期望时间比它大,那么就不往那边走,直接留在原地
设d p [ x ] dp[x] d p [ x ] 表示x x x 号点走到n n n 号点最优的期望时间,a i a_i a i 表示d p [ x ] dp[x] d p [ x ] 第i i i 小的x x x ,那么有
d p [ a i ] = 1 + ∑ j = 1 i d p [ a j ] ⋅ p a i , a j ⋅ ∏ k = 1 j − 1 ( 1 − p a i , a k )
dp[a_i] = 1 + \sum_{j = 1}^{i}dp[a_j]\cdot p_{a_i, a_j} \cdot \prod_{k=1}^{j-1}(1-p_{a_i,a_k})
d p [ a i ] = 1 + j = 1 ∑ i d p [ a j ] ⋅ p a i , a j ⋅ k = 1 ∏ j − 1 ( 1 − p a i , a k ) 显然a 1 = n a_1 = n a 1 = n ,后面的a i a_i a i 都可以通过不断找出当前局面最小的d p dp d p 值求出
至于计算d p dp d p 值的话,稍微化简一下变成:
d p [ a i ] = 1 + ∑ j = 1 i − 1 d p [ a j ] ⋅ p a i , a j ⋅ ∏ k = 1 j − 1 ( 1 − p a i , a k ) 1 − ∏ j = 1 i − 1 ( 1 − p a i , a j )
dp[a_i] = \frac{1 + \sum_{j=1}^{i-1}dp[a_j]\cdot p_{a_i, a_j}\cdot \prod_{k=1}^{j-1}(1-p_{a_i, a_k})}{1 - \prod_{j=1}^{i-1}(1-p_{a_i, a_j})}
d p [ a i ] = 1 − ∏ j = 1 i − 1 ( 1 − p a i , a j ) 1 + ∑ j = 1 i − 1 d p [ a j ] ⋅ p a i , a j ⋅ ∏ k = 1 j − 1 ( 1 − p a i , a k ) 分别维护一下分子部分和∏ \prod ∏ 的部分即可
时间复杂度O ( n 2 ) O(n^2) O ( n 2 )
Summary 这道题思路真的非常简单,但是自己想的时候就是想不清楚。
这种d p dp d p 和贪心的思想以及转化问题的能力还是太薄弱了
Code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 #include <bits/stdc++.h> #define x first #define y second #define y1 Y1 #define y2 Y2 #define mp make_pair #define pb push_back using namespace std ;typedef long long LL;typedef pair<int , int > pii;template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0 ; }template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0 ; }inline void proc_status () { ifstream t ("/proc/self/status" ) ; cerr << string (istreambuf_iterator <char > (t), istreambuf_iterator <char > ()) <<endl ; } template <typename T> T read () { T sum = 0 , fl = 1 ; char ch = getchar(); for (; !isdigit (ch); ch = getchar()) if (ch == '-' ) fl = -1 ; for (; isdigit (ch); ch = getchar()) sum = (sum << 3 ) + (sum << 1 ) + ch - '0' ; return sum * fl; } const int Maxn = 1000 + 100 ;int N, A[Maxn], Vis[Maxn];double P[Maxn][Maxn], Dp[Maxn], Prod[Maxn], Sum[Maxn];inline void Solve () { for (int i = 1 ; i <= N; ++i) Prod[i] = Sum[i] = 1 ; A[1 ] = N, Dp[N] = 0 , Vis[N] = 1 ; Dp[0 ] = 1e9 ; for (int i = 2 ; i <= N; ++i) { for (int j = 1 ; j <= N; ++j) { if (Vis[j]) continue ; Sum[j] += Dp[A[i - 1 ]] * P[j][A[i - 1 ]] * Prod[j]; Prod[j] *= (1.0 - P[j][A[i - 1 ]]); Dp[j] = Sum[j] / (1.0 - Prod[j]); } int pos = 0 ; for (int j = 1 ; j <= N; ++j) if (!Vis[j] && Dp[j] < Dp[pos]) pos = j; Vis[A[i] = pos] = 1 ; } printf ("%.10lf\n" , Dp[1 ]); } inline void Input () { N = read<int >(); for (int i = 1 ; i <= N; ++i) for (int j = 1 ; j <= N; ++j) P[i][j] = 1.0 * read<int >() / 100 ; } int main () {#ifndef ONLINE_JUDGE freopen("E.in" , "r" , stdin ); freopen("E.out" , "w" , stdout ); #endif Input(); Solve(); return 0 ; }