给你一棵nn个节点的树

定义 f(x,y)=psubtree(y),p!=y[dep(p)dep(x)]f (x, y) = \sum_{p\in subtree(y),p!=y} [dep(p) \le dep(x)]

定义 g(x)=xsubtree(p),p!=xf(x,p)g(x) = \sum_{x\in subtree(p),p!=x} f (x, p)

对于所有 i[1,n]i \in [1, n],求 g(i)g(i)

n5105n\le 5*10^5

CF860E

Solution

考虑每个ppg(i)g(i)的贡献,不难发现g(i)=dep(p)dep(i),pidep(lca(p,i))g(i) = \sum_{dep(p) \le dep(i),p\ne i} dep(lca(p,i))

考虑把所有点按深度从小到大排序,相同深度的同时加入,每加入一个点就把它到根这条链上的节点权值+1

每个点的答案就是它到根链上的权值和

树剖维护,时间复杂度O(nlog2n)O(n \log^2 n),CF上能跑过

这道题还有O(n)O(n)长链剖分的高妙做法,但是并不会

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#include <bits/stdc++.h>

#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }

inline void proc_status()
{
ifstream t ("/proc/self/status");
cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) <<endl;
}

template <typename T> T read ()
{
T sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

const int Maxn = 5e5 + 100;

int N, fa[Maxn], root, dep[Maxn], dfn[Maxn], dfs_clock, size[Maxn], son[Maxn], top[Maxn];
int e, Begin[Maxn], To[Maxn << 1], Next[Maxn << 1];

inline void add_edge (int x, int y) { To[++e] = y; Next[e] = Begin[x]; Begin[x] = e; }

vector <int> vec[Maxn];
int Maxdep;

inline void dfs (int x)
{
dep[x] = dep[fa[x]] + 1, size[x] = 1;
Chkmax(Maxdep, dep[x]);
vec[dep[x]].pb(x);
for (int i = Begin[x]; i; i = Next[i])
{
int y = To[i];
dfs(y);
size[x] += size[y];
if (size[y] > size[son[x]]) son[x] = y;
}
}

inline void dfs (int x, int now)
{
dfn[x] = ++dfs_clock, top[x] = now;
if (son[x]) dfs(son[x], now);
for (int i = Begin[x]; i; i = Next[i])
{
int y = To[i];
if (y == fa[x] || y == son[x]) continue;
dfs(y, y);
}
}

LL Ans[Maxn];

namespace SEG
{
#define ls (root << 1)
#define rs (root << 1 | 1)
#define lson ls, l, mid
#define rson rs, mid + 1, r
struct tree
{
LL sum, tag;
} Tree[Maxn << 2];

inline void push_up (int root) { Tree[root].sum = Tree[ls].sum + Tree[rs].sum; }
inline void push_down (int root, int l, int r, int mid)
{
if (!Tree[root].tag) return ;
Tree[ls].tag += Tree[root].tag, Tree[rs].tag += Tree[root].tag;
Tree[ls].sum += Tree[root].tag * (mid - l + 1), Tree[rs].sum += Tree[root].tag * (r - mid);
Tree[root].tag = 0;
}

inline void update (int root, int l, int r, int x, int y, int z)
{
if (x <= l && r <= y) { Tree[root].sum += 1ll * (r - l + 1) * z; Tree[root].tag += z; return ; }
int mid = l + r >> 1;
push_down (root, l, r, mid);
if (x <= mid) update (lson, x, y, z);
if (y > mid) update (rson, x, y, z);
push_up (root);
}

inline LL query (int root, int l, int r, int x, int y)
{
if (x <= l && r <= y) return Tree[root].sum;
int mid = l + r >> 1; LL ans = 0;
push_down(root, l, r, mid);
if (x <= mid) ans += query (lson, x, y);
if (y > mid) ans += query (rson, x, y);
return ans;
}

#undef ls
#undef rs
#undef lson
#undef rson
}

inline void Update (int x)
{
while (x)
{
SEG :: update (1, 1, N, dfn[top[x]], dfn[x], 1);
x = fa[top[x]];
}
}

inline LL Query (int x)
{
LL ans = 0;
while (x)
{
ans += SEG :: query (1, 1, N, dfn[top[x]], dfn[x]);
x = fa[top[x]];
}
return ans;
}

inline void Solve ()
{
dfs(root);
dfs(root, root);
for (int i = 1; i <= Maxdep; ++i)
{
for (int j = 0; j < vec[i].size(); ++j) Update (vec[i][j]);
for (int j = 0; j < vec[i].size(); ++j) Ans[vec[i][j]] = Query (vec[i][j]);
}
for (int i = 1; i <= N; ++i) printf("%lld ", Ans[i] - dep[i]);
}

inline void Input ()
{
N = read<int>();
for (int i = 1; i <= N; ++i) fa[i] = read<int>(), add_edge (fa[i], i), (!fa[i]) ? (root = i) : 0;
}

int main()
{
#ifndef ONLINE_JUDGE
freopen("chuyu.in", "r", stdin);
freopen("chuyu.out", "w", stdout);
#endif
Input();
Solve();
return 0;
}