1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
| #include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/hash_policy.hpp>
#define x first #define y second #define y1 Y1 #define y2 Y2 #define mp make_pair #define pb push_back
using namespace std;
typedef long long LL; typedef pair<int, int> pii;
template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; } template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
inline void proc_status() { ifstream t ("/proc/self/status"); cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) <<endl; }
inline LL read () { LL sum = 0, fl = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1; for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0'; return sum * fl; }
const int Maxn = 1e7 + 100, Mod = 1e9 + 7;
LL N, inv2, inv6; int Phi[Maxn], Not_Prime[Maxn], Prime[Maxn], prime_cnt; __gnu_pbds :: gp_hash_table<LL, int> F; LL FF[Maxn];
inline void Add (LL &a, LL b) { a += b; if (a >= Mod) a -= Mod; }
inline LL Pow (LL a, int b) { LL ans = 1; while (b) { if (b & 1) ans = 1ll * ans * a % Mod; a = 1ll * a * a % Mod; b >>= 1; } return ans; }
inline LL Calc_S (LL x) { x %= Mod; LL sum = 1ll * x * (x + 1) % Mod * inv2 % Mod; return sum; }
inline LL Calc_G (LL x) { x %= Mod; return x * (x + 1) % Mod * (2 * x + 1) % Mod * inv6 % Mod; }
inline LL Calc_F (LL n) { if (n <= Maxn - 5) return FF[n]; if (F[n]) return F[n]; LL ans = 1ll * Calc_S(n) * Calc_S(n) % Mod, sum1, sum2, sum; for (LL l = 2, r; l <= n; l = r + 1) { r = n / (n / l); sum1 = Calc_G(l - 1), sum2 = Calc_G(r); sum = Calc_F(n / l); Add (ans, Mod - sum * (sum2 - sum1 + Mod) % Mod); } return F[n] = ans; }
inline void Solve () { LL sum1, sum2, sum, ans = 0; for (LL l = 1, r; l <= N; l = r + 1) { r = N / (N / l); sum1 = Calc_F(l - 1), sum2 = Calc_F(r); sum = Calc_S(N / l); Add (ans, sum * (sum2 - sum1 + Mod) % Mod); } cout<<ans<<endl; }
inline void Input () { N = read(); }
inline void Init () { inv2 = Pow(2, Mod - 2), inv6 = Pow(6, Mod - 2);
Phi[1] = 1; for (int i = 2; i <= min(N, 1ll * Maxn - 5); ++i) { if (!Not_Prime[i]) { Prime[++prime_cnt] = i; Phi[i] = i - 1; } for (int j = 1; j <= prime_cnt && Prime[j] * i <= min(N, 1ll * Maxn - 5); ++j) { Not_Prime[i * Prime[j]] = 1; if (!(i % Prime[j])) { Phi[i * Prime[j]] = Phi[i] * Prime[j]; break; } else Phi[i * Prime[j]] = Phi[i] * (Prime[j] - 1); } } for (LL i = 1; i <= min(N, 1ll * Maxn - 5); ++i) FF[i] = Phi[i] * i % Mod * i % Mod; for (LL i = 1; i <= min(N, 1ll * Maxn - 5); ++i) Add (FF[i], FF[i - 1]); }
int main() { #ifndef ONLINE_JUDGE freopen("A.in", "r", stdin); freopen("A.out", "w", stdout); #endif Input(); Init(); Solve(); return 0; }
|