给出多组a,b,c,d,ka,b,c,d,k,求

i=abj=cd[gcd(i,j)==k] \sum_{i=a}^{b}\sum_{j=c}^{d}[\gcd(i,j)==k]

数据组数50000,a,b,c,d,k50000\le50000, a,b,c,d,k\le50000

Luogu P2522

Solution

一开始先容斥一下,就转化成「BZOJ1101」ZAP-Queries - 莫比乌斯反演 + 整除分块入门这道题了

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#include <bits/stdc++.h>

#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }

inline void proc_status()
{
ifstream t ("/proc/self/status");
cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) <<endl;
}

inline int read ()
{
int sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

const int Maxn = 5e4 + 100;

int a, b, c, d, K;
int Prime[Maxn], Not_Prime[Maxn], prime_cnt, Mu[Maxn], Sum_Mu[Maxn];

inline LL Calc (int n, int m)
{
n /= K, m /= K;
int N = min(n, m);
LL ans = 0;
for (int l = 1, r; l <= N; l = r + 1)
{
r = min(n / (n / l), m / (m / l));
ans += 1ll * (n / l) * (m / l) * (Sum_Mu[r] - Sum_Mu[l - 1]);
}
return ans;
}

inline void Solve ()
{
printf("%lld\n", Calc(b, d) - Calc(b, c - 1) - Calc (a - 1, d) + Calc(a - 1, c - 1));
}

inline void Input ()
{
a = read(), b = read(), c = read(), d = read(), K = read();
}

inline void Init ()
{
Mu[1] = Not_Prime[1] = 1;
for (int i = 2; i <= Maxn - 5; ++i)
{
if (!Not_Prime[i])
{
Prime[++prime_cnt] = i;
Mu[i] = -1;
}
for (int j = 1; j <= prime_cnt && i * Prime[j] <= Maxn - 5; ++j)
{
Not_Prime[i * Prime[j]] = 1;
if (!(i % Prime[j])) { Mu[i * Prime[j]] = 0; break; }
else Mu[i * Prime[j]] = -Mu[i];
}
}
for (int i = 1; i <= Maxn - 5; ++i) Sum_Mu[i] = Sum_Mu[i - 1] + Mu[i];
}

int main()
{
#ifndef ONLINE_JUDGE
freopen("A.in", "r", stdin);
freopen("A.out", "w", stdout);
#endif
Init();
int Testcase = read();
while (Testcase--)
{
Input();
Solve();
}
return 0;
}