给你nn个长度为mm0101

你可以在每个串前面加一个运算符\lor\land

每次询问一个长度为mm0101串,问有多少总操作序列能得到这个串

n1000,m5000,q1000n\le1000, m\le 5000, q\le 1000

Luogu P4424

Solution

按位考虑

通过观察发现,只有形如1|1&0\&0这样的运算才会改变这一位的答案

即最终结果是11的充要条件就是最后一个1|1的位置要在最后一个&0\&0的后面

于是把操作序列转化成一个0101序列0,&1|\rightarrow0, \&\rightarrow1

容易发现,在确定这一位最终结果的过程,实际上就是比较操作序列和原串的字典序的过程

那么就很好做了。按字典序排序,对于每个询问找到其对应的上下界(最后一个00出现的位置和第一个11出现的位置),直接统计答案即可

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#include <bits/stdc++.h>

#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }

inline void proc_status()
{
ifstream t ("/proc/self/status");
cerr << string (istreambuf_iterator <char> (t), istreambuf_iterator <char> ()) <<endl;
}

inline int read ()
{
int sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

const int Maxn = 1000 + 100, Maxm = 5000 + 100, Mod = 1e9 + 7;

int N, M, Q;
int A[Maxm][Maxn], Sum[Maxm], Rank[Maxm];

inline int cmp (int a, int b)
{
for (int i = 1; i <= N; ++i)
if (A[a][i] > A[b][i]) return 0;
else if (A[a][i] < A[b][i]) return 1;
return 0;
}

inline void Add (int &a, int b) { a += b; if (a >= Mod) a -= Mod; }

inline void Solve ()
{
static int Pow[Maxn];
Pow[0] = 1; for (int i = 1; i <= N; ++i) Pow[i] = 1ll * Pow[i - 1] * 2 % Mod;

for (int i = 1; i <= M; ++i) reverse (A[i] + 1, A[i] + N + 1);
for (int i = 1; i <= M; ++i) Rank[i] = i;
sort(Rank + 1, Rank + M + 1, cmp);

for (int i = 1; i <= M; ++i)
for (int j = 1; j <= N; ++j)
Add (Sum[i], A[Rank[i]][j] * Pow[N - j]);
Sum[M + 1] = Pow[N];

while (Q--)
{
static char S[Maxm];
int pos1 = 0, pos2 = M + 1;
scanf("%s", S + 1);

for (int i = M; i >= 1; --i) if (S[Rank[i]] == '0') {pos1 = i; break; }
for (int i = 1; i <= M; ++i) if (S[Rank[i]] == '1') {pos2 = i; break; }

printf("%d\n", pos1 <= pos2 ? (Sum[pos2] - Sum[pos1] + Mod) % Mod : 0);
}
}


inline void Input ()
{
N = read(), M = read(), Q = read();
for (int i = 1; i <= N; ++i)
{
static char S[Maxm];
scanf("%s", S + 1);
for (int j = 1; j <= M; ++j)
A[j][i] = S[j] - '0';
}
}

int main()
{
#ifdef hk_cnyali
freopen("A.in", "r", stdin);
freopen("A.out", "w", stdout);
#endif
Input();
Solve();
return 0;
}