求长度为nni[1,n],ai1<ai>ai+1 or ai1>ai<ai+1\forall i\in [1,n], a_{i-1}<a_i>a_{i+1} ~ or ~a_{i-1}>a_i<a_{i+1}的排列数量(对PP取模)

3n4200,P1093\le n\le 4200, P \le 10^9

Luogu P2467

Solution

首先很容易想到设dp[i][j][0/1]dp[i][j][0/1]表示到第ii位,第ii位放jj这个数,且这个数为谷/峰的方案数

但是显然这个会算重,考虑把jj换一个定义:在前ii位中排第jj位的数,那么就很好转移了

注意开个滚动数组优化空间

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include <bits/stdc++.h>

#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) { return a < b ? a = b, 1 : 0; }
template <typename T> inline int Chkmin (T &a, T b) { return a > b ? a = b, 1 : 0; }
inline int read ()
{
int sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

const int Maxn = 4200 + 100;

int N, Mod, Dp[2][Maxn][2];

int main()
{
#ifdef hk_cnyali
freopen("A.in", "r", stdin);
freopen("A.out", "w", stdout);
#endif
N = read(), Mod = read();
Dp[1][1][0] = Dp[1][1][1] = 1;
int now = 1;
for (int i = 2; i <= N; ++i)
{
now ^= 1;
int sum = 0;
for (int j = 1; j <= i; ++j)
{
(Dp[now][j][0] = sum) %= Mod;
(sum += Dp[now ^ 1][j][1]) %= Mod;
}
sum = 0;
for (int j = i; j >= 1; --j)
{
(sum += Dp[now ^ 1][j][0]) %= Mod;
(Dp[now][j][1] = sum) %= Mod;
}
}
int ans = 0;
for (int i = 1; i <= N; ++i)
(ans += Dp[now][i][0] + Dp[now][i][1]) %= Mod;
cout<<ans<<endl;
return 0;
}