一张nn个点mm条边的简单有向图,求dis(1,n)MinDis(1,n)+Kdis(1,n) \le MinDis(1,n) + K的路径数

Luogu P3953

Constraints

N105,M2105,K50N \le 10^5, M\le 2 * 10^5, K\le 50,存在为0的边

1P109,1ai,biN,0ci10001 \le P \le 10^9,1 \le a_i,b_i \le N ,0 \le c_i \le 1000

Solution

很显然是一个关于K的Dp

先预处理出MinDis(x,n)MinDis(x,n)表示xxnn的最短路

Dp[x][k]Dp[x][k]表示到第xx个点,dis(x,n)MinDis(x,n)+kdis(x,n)\le MinDis(x,n)+k的方案数,答案就是Dp[1][K]Dp[1][K]

对于一条边(x,y,w)(x, y, w), 它所消耗的kkMinDis(y,n)MinDis(x,n)+wMinDis(y,n) - MinDis(x,n) + w

如果MinDis(y,n)MinDis(x,n)+wkMinDis(y,n) - MinDis(x,n) + w \le k

那么Dp[x][k]+=Dp[y][k(MinDis(y,n)MinDis(x,n)+w)]Dp[x][k]+= Dp[y][k - (MinDis(y,n) - MinDis(x,n) + w)]

直接记忆化搜索即可,对于0环只需要用一个栈记录一下:如果当前搜索的(x,k)(x,k)还在栈中就返回-1

这样做的话因为每个状态最多只会遍历到一次(或者这样理解:在转移的时候k在不断减小),所以时间复杂度是能保证的

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#include <bits/stdc++.h>

#define x first
#define y second
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) {return a < b ? a = b, 1 : 0;}
template <typename T> inline int Chkmin (T &a, T b) {return a > b ? a = b, 1 : 0;}
inline int read ()
{
int sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + ch - '0';
return sum * fl;
}

const int Maxn = 100000 + 100, Maxm = 200000 + 100, Maxk = 50 + 10, inf = 0x3f3f3f3f;

int N, M, K, Mod, e, Begin[Maxn], To[Maxm], Next[Maxm], W[Maxm];
int Dp[Maxn][Maxk], In[Maxn][Maxk];

inline void add_edge (int x, int y, int z) { To[++e] = y; Next[e] = Begin[x]; Begin[x] = e; W[e] = z; }

inline void Init()
{
e = 0;
memset(Begin, 0, sizeof Begin);
memset(Dp, 0, sizeof Dp);
memset(In, 0, sizeof In);
}

int Dis[Maxn], Vis[Maxn];

namespace Dijkstra
{
int e1, Begin1[Maxn], To1[Maxm], Next1[Maxm], W1[Maxm];
struct node
{
int a, b;
bool operator < (const node &x) const { return x.b < b; }
};

inline void init() { e1 = 0; memset(Begin1, 0, sizeof Begin1); }

inline void add_edge (int x, int y, int z) { To1[++e1] = y; Next1[e1] = Begin1[x]; Begin1[x] = e1; W1[e1] = z; }

inline void work (int S)
{
static priority_queue <node> Q;
for (int i = 1; i <= N; ++i) Dis[i] = inf, Vis[i] = 0;
Dis[S] = 0; Q.push((node){S, 0});
while (!Q.empty())
{
int x = Q.top().a; Q.pop();
if (Vis[x]) continue;
Vis[x] = 1;
for (int i = Begin1[x]; i; i = Next1[i])
{
int y = To1[i];
if (Chkmin(Dis[y], Dis[x] + W[i])) Q.push((node){y, Dis[y]});
}
}
}
}

inline int dfs (int x, int k)
{
// cout<<x<<" "<<k<<endl;
if (In[x][k]) return -1;
if (Dp[x][k]) return Dp[x][k];
In[x][k] = 1;
if (x == N) Dp[x][k] = 1;
for (int i = Begin[x]; i; i = Next[i])
{
int y = To[i];
int tmp = Dis[y] - Dis[x] + W[i];
if (tmp <= k)
{
int sum = dfs(y, k - tmp);
if (sum == -1) return Dp[x][k] = -1;
(Dp[x][k] += sum) %= Mod;
}
}
In[x][k] = 0;
return Dp[x][k];
}

int main()
{
#ifndef ONLINE_JUDGE
freopen("park.in", "r", stdin);
freopen("park.out", "w", stdout);
#endif
int Test = read();
while (Test--)
{
Init();
Dijkstra :: init();
N = read(), M = read(), K = read(), Mod = read();
for (int i = 1; i <= M; ++i)
{
int x = read(), y = read(), z = read();
add_edge (x, y, z);
Dijkstra :: add_edge (y, x, z);
}
Dijkstra :: work (N);
// for (int i = 1; i <= N; ++i) cout<<Dis[i]<<" ";
// cout<<endl;
printf("%d\n", dfs(1, K));
}
return 0;
}