题目链接:传送门

Description

给定一棵nn个点的树,对于每一个点求出子树内所在深度节点个数最多的相对深度(即深度减去当前点的深度)

Constraints

n106n \leq 10^6

Solution

用map记录子树信息,直接树上启发式合并即可

Debug

53L: 不能直接swap(ans[x], ans[y]),否则会改变ans[y]的值

58L: 不能用迭代器,要用键值,并且迭代器只能++或--,而不能+1, -1

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <bits/stdc++.h>

#define x first
#define y second
#define x1 X1
#define x2 X2
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) {return a < b ? a = b, 1 : 0;}
template <typename T> inline int Chkmin (T &a, T b) {return a > b ? a = b, 1 : 0;}
inline int read ()
{
int sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = sum * 10 + ch - '0';
return sum * fl;
}

const int Maxn = 1e6 + 100;

int N, dep[Maxn];
int e, Begin[Maxn], To[Maxn << 1], Next[Maxn << 1];
map <int, int> sum[Maxn];
pii ans[Maxn];

inline void add_edge (int x, int y)
{
To[++e] = y;
Next[e] = Begin[x];
Begin[x] = e;
}

inline void dfs (int x, int fa)
{
sum[x][dep[x]] = 1;
ans[x] = mp(1, -dep[x]);
for (int i = Begin[x]; i; i = Next[i])
{
int y = To[i];
if (y == fa) continue;
dep[y] = dep[x] + 1; dfs(y, x);
if (sum[x].size() < sum[y].size())
{
sum[x].swap(sum[y]);
/**/ ans[x] = ans[y];
}
map <int, int> :: iterator it;
for (it = sum[y].begin(); it != sum[y].end(); ++it)
{
/**/ pii now = *it;
sum[x][now.x] += now.y;
ans[x] = max(ans[x], mp(sum[x][now.x], -now.x));
}
}
}

int main()
{
#ifdef hk_cnyali
freopen("F.in", "r", stdin);
freopen("F.out", "w", stdout);
#endif
N = read();
for (int i = 1; i < N; ++i)
{
int x = read(), y = read();
add_edge (x, y);
add_edge (y, x);
}
dfs(1, 0);
for (int i = 1; i <= N; ++i)
printf("%d\n", -ans[i].y - dep[i]);
return 0;
}