1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
| #include <bits/stdc++.h>
#define int long long #define x first #define y second #define x1 X1 #define x2 X2 #define y1 Y1 #define y2 Y2 #define mp make_pair #define pb push_back
using namespace std;
typedef long long LL; typedef pair<int, int> pii;
template <typename T> inline int Chkmax (T &a, T b) {return a < b ? a = b, 1 : 0;} template <typename T> inline int Chkmin (T &a, T b) {return a > b ? a = b, 1 : 0;} inline int read () { int sum = 0, fl = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1; for (; isdigit(ch); ch = getchar()) sum = sum * 10 + ch - '0'; return sum * fl; }
const int maxn = 1e5 + 100;
int N, M; int A[maxn], P[maxn], ATK[maxn], mod[maxn], rest[maxn];
inline int Plus (int &a, int b, int p) { a %= p; b %= p; (a += b) %= p; }
inline int Mult (int a, int b, int p) { int ans = 0; a = (a % p + p) % p; b = (b % p + p) % p; while (b) { if (b & 1) Plus (ans, a, p); Plus (a, a, p); b >>= 1; } return ans; }
inline void Exgcd (int a, int b, int &d, int &x, int &y) { if (!b) d = a, x = 1, y = 0; else { Exgcd(b, a % b, d, y, x); y -= x * (a / b); } } inline int Inv (int a,int n) { int d, x, y; Exgcd (a, n, d, x, y); return d == 1 ? (x + n) % n : -1; }
inline int Solve() { for (int i = 1; i < N; ++i) { int a = mod[i], b = mod[i + 1], c = rest[i + 1] - rest[i], gcd = __gcd(a, b), k1, k2, g; if (c % gcd) return -1; a /= gcd; b /= gcd; c /= gcd; Exgcd(a, b, g, k1, k2); k1 = (Mult(k1, c, b) + b) % b; mod[i + 1] = mod[i] / __gcd(mod[i], mod[i + 1]) * mod[i + 1] ; rest[i + 1] = (Mult(mod[i], k1, mod[i + 1]) + rest[i]) % mod[i + 1]; } return rest[N]; }
multiset <int> S;
main() { freopen("dragon.in", "r", stdin); freopen("dragon.out", "w", stdout); int T = read(); while (T--) { S.clear(); N = read(), M = read(); for (int i = 1; i <= N; ++i) A[i] = read(); int fl = 0; for (int i = 1; i <= N; ++i) { P[i] = read(); if (P[i] != 1) fl = 1; } for (int i = 1; i <= N; ++i) ATK[i] = read(); int ans = -1; for (int i = 1; i <= M; ++i) S.insert(read()); for (int i = 1; i <= N; ++i) { multiset <int> :: iterator it = S.upper_bound(A[i]); if (it != S.begin()) it--; rest[i] = *it; Chkmax(ans, (int)ceil((double)(1.0 * A[i] / rest[i]))); S.erase(it); S.insert(ATK[i]); } if (!fl) cout<<ans<<endl; else { int flag = 0; for (int i = 1; i <= N; ++i) { mod[i] = P[i]; int x = Inv(rest[i], mod[i]); if (x == -1) { int g = __gcd(rest[i], mod[i]); int gg = __gcd(g, A[i]); if (gg != g) { flag = 1; break; } else { rest[i] /= g, mod[i] /= g, A[i] /= g; x = Inv(rest[i], mod[i]); } } rest[i] = Mult(A[i], x, mod[i]); } if (flag) cout<<-1<<endl; else cout<<Solve()<<endl; } } return 0; }
|