Description

给出一个nn个点mm条边的无向连通图,每条边有长度和海拔。qq次询问,每次给出一个水位线pp ,和一个节点vv,询问从vv节点开始,经过一段连续的海拔大于pp的边后,到1号节点的最短路(前缀海拔大于pp的边不算贡献)

Constraints

n200000n \leq 200000

m,q400000m, q \leq 400000

强制在线

Solution

考场上调了一个上午,最后居然还因为数组开小RE两个点,我还是太弱了

显然对于一个点,答案就是它所在的海拔大于pp的联通块中disidis_i(表示从1号点的最短路)最小的一个

如果不强制在线的话,我们只需要先跑一遍最短路,然后将询问按pp排序,用并查集维护联通块和答案即可

如果强制在线,则需要使用可持久化并查集

可持久化并查集实际上就是用主席树来维护可持久化数组(fa[]fa[]ans[]ans[]

然后就能通过此题了

Code(5KB)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#include <bits/stdc++.h>

#define x first
#define y second
#define x1 X1
#define x2 X2
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) {return a < b ? a = b, 1 : 0;}
template <typename T> inline int Chkmin (T &a, T b) {return a > b ? a = b, 1 : 0;}

inline int read ()
{
int sum = 0, fl = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = (sum << 3) + (sum << 1) + (ch ^ 48);
return sum * fl;
}

const int Maxn = 300000 + 100, Maxm = 900000 + 100;

int N, M, QQ, K, S, e, Begin[Maxn], To[Maxm], Next[Maxm], W[Maxm], H[Maxm];

inline void Init()
{
e = 0;
memset(Begin, 0, sizeof Begin);
}

inline void add_edge (int x, int y, int l, int a)
{
To[++e] = y;
Next[e] = Begin[x];
Begin[x] = e;
W[e] = l;
H[e] = a;
}

int Vis[Maxn], Dis[Maxn];

struct node
{
int a, b;
bool operator < (const node &x) const { return x.b < b; }
};

inline void Dijkstra()
{
static priority_queue <node> Q;
for (int i = 0; i <= N; ++i) Dis[i] = -1, Vis[i] = 0;
Dis[1] = 0;
Q.push((node){1, 0});
while (!Q.empty())
{
node tmp = Q.top(); Q.pop();
int x = tmp.a;
if (Vis[x]) continue;
Vis[x] = 1;
for (int i = Begin[x]; i; i = Next[i])
{
int y = To[i];
if (Dis[y] > Dis[x] + W[i] || Dis[y] == -1)
{
Dis[y] = Dis[x] + W[i];
Q.push((node){y, Dis[y]});
}
}
}
}

int HH[Maxm];
struct edge
{
int x, y, z, h;
}A[Maxm];

inline int cmp1 (int a, int b)
{
return a > b;
}
inline int cmp2 (edge a, edge b)
{
return a.h > b.h;
}

int Root[Maxm][2], fa[Maxn], Cnt;

namespace SEG
{
struct tree
{
int lson[2], rson[2], val, fa;
}Tree[Maxn * 30];

inline void build (int &root, int l, int r, int op)
{
root = ++ Cnt;
if (l == r)
{
if (!op) Tree[root].fa = l;
else Tree[root].val = Dis[l];
return ;
}
int mid = (l + r) >> 1;
build (Tree[root].lson[op], l, mid, op);
build (Tree[root].rson[op], mid + 1, r, op);
}

inline void insert (int pre, int &now, int l, int r, int x, int d, int op)
{
//if (!now)
{
now = ++ Cnt;
Tree[now].lson[op] = Tree[pre].lson[op];
Tree[now].rson[op] = Tree[pre].rson[op];
}
if (l == r)
{
if (!op) Tree[now].fa = d;
else Tree[now].val = d;
return ;
}
int mid = (l + r) >> 1;
if (x <= mid) insert (Tree[pre].lson[op], Tree[now].lson[op], l, mid, x, d, op);
else insert (Tree[pre].rson[op], Tree[now].rson[op], mid + 1, r, x, d, op);
}

inline int query (int root, int l, int r, int x, int op)
{
if (l == r)
{
if (!op) return Tree[root].fa;
return Tree[root].val;
}
int mid = (l + r) >> 1;
if (x <= mid) return query (Tree[root].lson[op], l, mid, x, op);
else return query (Tree[root].rson[op], mid + 1, r, x, op);
}

inline int find (int root, int x)
{
int f = query (root, 1, N, x, 0);
return f == x ? x : find(root, f);
}
}

int size[Maxn];

inline int find (int x)
{
return fa[x] == x ? x : find(fa[x]);
}

inline void Link (int x, int y, int id)
{
int fx = find(x), fy = find(y);
if (fx == fy)
return ;
// cout<<x<<" "<<y<<"| "<<fx<<" "<<fy<<" | "<<id<<endl;
if (size[fx] < size[fy]) swap(fx, fy);
size[fx] += size[fy];
fa[fy] = fx;
SEG :: insert (Root[id - 1][0], Root[id][0], 1, N, fy, fx, 0);
if (Dis[fy] < Dis[fx])
{
Dis[fx] = Dis[fy];
SEG :: insert (Root[id - 1][1], Root[id][1], 1, N, fx, Dis[fy], 1);
}
}

int Pos[Maxm];

main()
{
freopen("return.in", "r", stdin);
freopen("return.out", "w", stdout);
int T = read();
while (T--)
{
Init();
memset(SEG :: Tree, 0, sizeof SEG :: Tree);
memset(Root, 0, sizeof Root);
Cnt = 0;
N = read(), M = read();
for (int i = 1; i <= M; ++i)
{
int x = read(), y = read(), l = read(), a = read();
A[i] = ((edge){x, y, l, a});
HH[i] = a;
add_edge (x, y, l, a);
add_edge (y, x, l, a);
}
Dijkstra();
sort(HH + 1, HH + M + 1, cmp1); sort(A + 1, A + M + 1, cmp2);
int tot = unique(HH + 1, HH + M + 1) - HH - 1;
int MIN = HH[tot];
HH[++tot] = -0x3f3f3f3f;
for (int i = 1; i <= N; ++i) fa[i] = i, size[i] = 1;
SEG :: build (Root[0][0], 1, N, 0);
SEG :: build (Root[0][1], 1, N, 1);
int j = 1;
Pos[1] = 0;
for (int i = 1; i <= M; ++i)
{
Root[i][0] = Root[i - 1][0];
Root[i][1] = Root[i - 1][1];
Link(A[i].x, A[i].y, i);
if (HH[j] != A[i].h) ++j;
Pos[j + 1] = i;
}
for (int i = 1; i <= tot; ++i) HH[i] = -HH[i];
QQ = read(), K = read(), S = read();
int ans = 0;
while (QQ--)
{
int v = read(), p = read();
v = (v + K * ans - 1) % N + 1;
p = (p + K * ans) % (S + 1);
if (p < MIN)
ans = 0;
else
{
p = -p;
int pos = lower_bound(HH + 1, HH + tot + 1, p) - HH;
pos = Pos[pos];
ans = SEG :: query (Root[pos][1], 1, N, SEG :: find (Root[pos][0], v), 1);
}
printf("%d\n", ans);
}
}
return 0;
}