Description

给出一个nn个点mm条边的图,对于每个点有一个流量sis_i表示它需要恰好流进或流出(正/负)多少流量

问是否存在一种流量方案使得每个点都满足流进或流出sis_i的流量

如果存在则输出方案

Constraints

n,m2105n,m \leq 2 * 10^5

Solution

考虑贪心,从这个图中提取出一棵树出来,在树上考虑流量问题

那么从下至上依次贪心满足流量,最后判断1号节点流量是否平衡即可

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include <bits/stdc++.h>

#define x first
#define y second
#define x1 X1
#define x2 X2
#define y1 Y1
#define y2 Y2
#define mp make_pair
#define pb push_back

using namespace std;

typedef long long LL;
typedef pair<int, int> pii;

template <typename T> inline int Chkmax (T &a, T b) {return a < b ? a = b, 1 : 0;}
template <typename T> inline int Chkmin (T &a, T b) {return a > b ? a = b, 1 : 0;}
template <typename T> T read()
{
T fl = 1, sum = 0; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = sum * 10 + ch - '0';
return sum * fl;
}

const int Maxn = 2 * 1e5 + 100;

int N, M, e, Begin[Maxn], To[Maxn << 1], Next[Maxn << 1], W[Maxn << 1];
int A[Maxn], Vis[Maxn], Ans[Maxn];

inline void add_edge (int x, int y)
{
To[++e] = y;
Next[e] = Begin[x];
Begin[x] = e;
}

inline void dfs (int x)
{
Vis[x] = 1;
for (int i = Begin[x]; i; i = Next[i])
{
int y = To[i];
if (Vis[y]) continue;
dfs(y);
Ans[(i + 1) / 2] = A[y] * ((i % 2) ? 1 : -1);
A[x] += A[y];
}
}

int main()
{
#ifdef hk_cnyali
freopen("F.in", "r", stdin);
freopen("F.out", "w", stdout);
#endif
N = read<int>();
for (int i = 1; i <= N; ++i) A[i] = read<int>();
M = read<int>();
for (int i = 1; i <= M; ++i)
{
int x = read<int>(), y = read<int>();
add_edge (x, y);
add_edge (y, x);
}
dfs(1);
if (A[1])
{
puts("Impossible");
return 0;
}
puts("Possible");
for (int i = 1; i <= M; ++i) cout<<Ans[i]<<endl;
return 0;
}