题目链接:传送门

Description

n个和尚住的地方,m个其他地方。每个地方挖一口井需要花费q[i]的钱,两个地方连通需要花费对应的边权值。求所有人都能喝到水的最小花费。

Solution

新建一个节点,连接所有点,边权为挖井的花费,然后直接上斯坦纳树即可

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#include <bits/stdc++.h>

using namespace std;

const int Maxn = 1000 + 10, Maxm = 10000 + 10, inf = 100000000;

int N, M, K;
int e, Begin[Maxm], To[Maxm * 2], Next[Maxm * 2], W[Maxm * 2];
int Dis[Maxn][(1 << 11)], Vis[Maxm], Dp[(1 << 11)];

inline void Init ()
{
e = 0;
memset(Begin, 0, sizeof Begin);
memset(Vis, 0, sizeof Vis);
for (int i = 1; i <= N + M; ++i)
for (int j = 0; j < (1 << 10); ++j)
Dis[i][j] = inf;
}

inline void add_edge (int x, int y, int z)
{
To[++e] = y;
Next[e] = Begin[x];
Begin[x] = e;
W[e] = z;
}

queue <int> Q;
inline void SPFA (int state)
{
while (!Q.empty())
{
int x = Q.front(); Q.pop();
Vis[x] = 0;
for (int i = Begin[x]; i; i = Next[i])
{
int y = To[i];
if (Dis[y][state] > Dis[x][state] + W[i])
{
Dis[y][state] = Dis[x][state] + W[i];
if (!Vis[y])
{
Vis[y] = 1;
Q.push(y);
}
}
}
}
}

int main()
{
#ifdef hk_cnyali
freopen("A.in", "r", stdin);
freopen("A.out", "w", stdout);
#endif
while (~scanf("%d%d%d", &N, &M, &K))
{
Init();
for (int i = 1; i <= N + M; ++i)
{
int x;
scanf("%d", &x);
if (i <= N)
{
Dis[i][(1 << (i - 1))] = 0;
Dis[i][(1 << (i - 1)) | (1 << N)] = x;
}
else Dis[i][1 << N] = x;
}
while (K--)
{
int x, y, z;
scanf("%d%d%d", &x, &y, &z);
add_edge(x, y, z);
add_edge(y, x, z);
}


int tmp = N + 1;
for (int state = 1; state < (1 << tmp); ++state)
{
for (int i = 1; i <= N + M; ++i)
{
for (int s1 = state & (state - 1); s1; s1 = state & (s1 - 1))
Dis[i][state] = min(Dis[i][state], Dis[i][(state - s1)] + Dis[i][s1]);
if (Dis[i][state] != inf) Q.push(i), Vis[i] = 1;
}
SPFA(state);
}

for (int state = 1; state < (1 << tmp); ++state)
{
Dp[state] = inf;
for (int i = 1; i <= N + M; ++i)
Dp[state] = min(Dp[state], Dis[i][state]);//cout<<Dis[i][state]<<" ";
// cout<<endl;
}

for (int state = 1; state < (1 << tmp); ++state)
{
if (!(state & (1 << N))) continue;
for (int s1 = state & (state - 1); s1; s1 = state & (s1 - 1))
{
if (!(s1 & (1 << N))) continue;
Dp[state] = min(Dp[state], Dp[s1] + Dp[(state - s1) | (1 << N)]);
}
}
cout<<Dp[(1 << tmp) - 1]<<endl;
}
return 0;
}